87 research outputs found

    Deferring the learning for better generalization in radial basis neural networks

    Get PDF
    Proceeding of: International Conference Artificial Neural Networks — ICANN 2001. Vienna, Austria, August 21–25, 2001The level of generalization of neural networks is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the most appropriate training patterns to the new sample to be predicted. The proposed method has been applied to Radial Basis Neural Networks, whose generalization capability is usually very poor. The learning strategy slows down the response of the network in the generalisation phase. However, this does not introduces a significance limitation in the application of the method because of the fast training of Radial Basis Neural Networks

    Empirical Evaluation of the Difficulty of Finding a Good Value of k for the Nearest Neighbor

    Get PDF
    As an analysis of the classification accuracy bound for the Nearest Neighbor technique, in this work we have studied if it is possible to find a good value of the parmeter k for each example according to their attribute values. Or at least, if there is a pattern for the parameter k in the original search space. We have carried out different approaches based onthe Nearest Neighbor technique and calculated the prediction accuracy for a group of databases from the UCI repository. Based on the experimental results of our study, we can state that, in general, it is not possible to know a priori a specific value of k to correctly classify an unseen example

    Lazy training of radial basis neural networks

    Get PDF
    Proceeding of: 16th International Conference on Artificial Neural Networks, ICANN 2006. Athens, Greece, September 10-14, 2006Usually, training data are not evenly distributed in the input space. This makes non-local methods, like Neural Networks, not very accurate in those cases. On the other hand, local methods have the problem of how to know which are the best examples for each test pattern. In this work, we present a way of performing a trade off between local and non-local methods. On one hand a Radial Basis Neural Network is used like learning algorithm, on the other hand a selection of the training patterns is used for each query. Moreover, the RBNN initialization algorithm has been modified in a deterministic way to eliminate any initial condition influence. Finally, the new method has been validated in two time series domains, an artificial and a real world one.This article has been financed by the Spanish founded research MEC project OPLINK::UC3M, Ref: TIN2005-08818-C04-0

    Towards lifetime maintenance of case base indexes for continual case based reasoning

    Full text link

    A survey on feature weighting based K-Means algorithms

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Classification [de Amorim, R. C., 'A survey on feature weighting based K-Means algorithms', Journal of Classification, Vol. 33(2): 210-242, August 25, 2016]. Subject to embargo. Embargo end date: 25 August 2017. The final publication is available at Springer via http://dx.doi.org/10.1007/s00357-016-9208-4 © Classification Society of North America 2016In a real-world data set there is always the possibility, rather high in our opinion, that different features may have different degrees of relevance. Most machine learning algorithms deal with this fact by either selecting or deselecting features in the data preprocessing phase. However, we maintain that even among relevant features there may be different degrees of relevance, and this should be taken into account during the clustering process. With over 50 years of history, K-Means is arguably the most popular partitional clustering algorithm there is. The first K-Means based clustering algorithm to compute feature weights was designed just over 30 years ago. Various such algorithms have been designed since but there has not been, to our knowledge, a survey integrating empirical evidence of cluster recovery ability, common flaws, and possible directions for future research. This paper elaborates on the concept of feature weighting and addresses these issues by critically analysing some of the most popular, or innovative, feature weighting mechanisms based in K-Means.Peer reviewedFinal Accepted Versio

    A Review on Automatic Analysis of Human Embryo Microscope Images

    Get PDF
    Over the last 30 years the process of in vitro fertilisation (IVF) has evolved considerably, yet the efficiency of this treatment remains relatively poor. The principal challenge faced by doctors and embryologists is the identification of the embryo with the greatest potential for producing a child. Current methods of embryo viability assessment provide only a rough guide to potential. In order to improve the odds of a successful pregnancy it is typical to transfer more than one embryo to the uterus. However, this often results in multiple pregnancies (twins, triplets, etc), which are associated with significantly elevated risks of serious complications. If embryo viability could be assessed more accurately, it would be possible to transfer fewer embryos without negatively impacting IVF pregnancy rates. In order to assist with the identification of viable embryos, several scoring systems based on morphological criteria have been developed. However, these mostly rely on a subjective visual analysis. Automated assessment of morphological features offers the possibility of more accurate quantification of key embryo characteristics and elimination of inter- and intra-observer variation. In this paper, we describe the main embryo scoring systems currently in use and review related works on embryo image analysis that could lead to an automatic and precise grading of embryo quality. We summarise achievements, discuss challenges ahead, and point to some possible future directions in this research field

    Weighted kNN versus majority kNN: a recommendation

    No full text
    • …
    corecore